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The dynamics of spherical bubble growth
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Abstract

Spherically symmetric bubble expansion in uniformly superheated infinite pools of liquid have been simulated

numerically. Bubble growth curves have been generated for a range of Jakob numbers, 36 Ja6 3167, by altering the

initial metastable state of the system facilitated by changes in the initial superheat and system pressure. The detailed

physics of vapour bubble growth is studied through delineation of the parameters governing the changes in the growth

dynamics from surface tension, to inertia dominated, to diffusion controlled, and the domains between them.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The progression towards an accurate prediction of

the heat transfer rates during nucleate pool boiling is

hampered by the seemingly insurmountable task of

developing a physical model and solution technique

which takes into account all of the factors which sig-

nificantly influence bubble nucleation, growth and

departure. However, in recent times, theories predicting

bubble growth have progressed markedly and now

provide considerable insight into the nucleate boiling

phenomena by exploring the fundamental nature of

bubble growth.

The natural starting point for the study of bubble

growth during boiling processes is the ideal case of

spherically symmetric bubble expansion in a uniformly

superheated infinite pool of liquid. Although greatly

simplified over the practical case of heating from a solid

surface, exact analytic solutions are unattainable be-

cause of the complicated thermal and hydrodynamic

interaction of the vapour and liquid at the bubble wall,

the pressure–temperature dependence of the vapour and

the coupling between the liquid momentum and energy
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equations through the non-linear convection term. The

early theoretical works of Rayleigh [1], Plesset and

Zwick [2], Forster and Zuber [3] and Scriven [4], among

others, yielded approximate solutions for the bubble

growth rate by considering the two limiting regions; the

inertia and diffusion controlled growth regions. Inertia

controlled growth is restricted to the initial stages of

expansion during which the rate at which the bubble

grows is primarily determined by its ability to accelerate

or ‘push back’ the surrounding liquid independent of the

rate of vapour generation into the bubble. For this case

then, the bubble growth could be predicted by the

solution to the momentum equation alone. Assuming

potential flow, integration of the one-dimensional

momentum equation in the liquid provides an expres-

sion which describes the growth of the vapour bubble

[2–5] according to

PvðTvÞ � P1
ql

¼ R
d2R
dt2

þ 3

2

dR
dt

� �2

þ 2r
qlR

; ð1Þ

where the pressure rise across the vapour–liquid inter-

face has been related by the Young–Laplace equation,

PvðtÞ � P1 ¼ 2r=RðtÞ. Eq. (1), known as the extended or

modified Rayleigh equation, is an equilibrium balance

between the pressure of the vapour, the surface tension

stresses and the net pressure imposed by the liquid.

Integration of Eq. (1), assuming the vapour pressure is

nearly constant at Pv � PsatðT1Þ and the bubble is large
ed.
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Nomenclature

Cp specific heat (J/kg K)

hfg latent heat of evaporation (J/kg)

Ja Jakob number, Ja ¼ qlClðT1 � TsatðP1ÞÞ
qvhfg

M number of grid points

P pressure (Pa)

r radial direction (m)

R bubble radius (m)

Rþ dimensionless radius in MRG solution

Rc initial bubble radius (m)

t time (s)

tþ dimensionless time in MRG solution

T temperature (�C)
u radial velocity (m/s)

Greek symbols

a thermal diffusivity (m2/s)

d thermal layer thickness (m)

g transformed computational coordinate,

g ¼ 1
M�1

l viscosity (kg m/s)

q density (kg/m3)

r surface tension (N/m)

Subscripts

l liquid

sat saturation condition

v vapour

w wall

1 far field
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enough that the surface tension term is negligible yields

the Rayleigh solution for inertial controlled growth

RðtÞ ¼ 2

3

T1 � TsatðP1Þ
TsatðP1Þ

� �
hfgqv

ql

� �1=2

t; ð2Þ

where the linearized form of the Clapeyron equation is

substituted to relate the saturated vapour temperature

and pressure. The existence of the inertial controlled

growth stage and corresponding linear relationship has

been confirmed by the low pressure experiments of Lien

[6] as well as the low pressure numerical simulations of

Lee [7] and Robinson [8].

Plesset and Zwick [2], Forster and Zuber [3] and

Scriven [4] are foremost among the researchers who

extended bubble growth predictions beyond the inertial

controlled growth region by taking into account the fact

that as the bubble grows, the latent heat requirement of

evaporation depletes the energy stored within the

superheated layer which has formed at the surface of the

bubble. As the bubble grows, its equilibrium vapour

temperature decreases from T1 to its minimum value of

TsatðP1Þ. As the interfacial temperature and corre-

sponding pressure drop, bubble growth becomes limited

by the relatively slower diffusion of heat to the vapour–

liquid interface, causing the growth rate to continually

decrease. Plesset and Zwick [2] and Forster and Zuber

[3] obtained analytic solutions which predict the

instantaneous bubble radius for thermal diffusion con-

trolled growth by supplying approximate expressions for

the temperature of the liquid at the interface and

assuming that the thickness of the thermal boundary

layer surrounding the bubble is much smaller than the

radius of the bubble. The ‘thin thermal boundary layer’

assumption resulted in expressions for the liquid tem-

perature at the moving interface that took into account
the effect of the changing interfacial area on the tem-

perature distribution at the interface [5]. The leading

order approximation for the growth rate is given by

RðtÞ ¼ 2CJa
alt
p

� �1=2
; ð3Þ

where, the constant is C ¼ ð3Þ1=2 for Plesset and Zwick

[2] and C ¼ p=2 for Forster and Zuber [3]. The solution

for the temperature gradient at a stationary plane

interface of a semi-infinite medium gives C ¼ 1:0 and

Riznic et al. [5] correctly pointed out that the coefficient,

C, accounts for the influence of the increasing interfacial

area on the temperature gradient near the interface. Eq.

(3) was shown to agree very well with the experimental

data of Dergarabedian [9] for bubble growth in water

at atmospheric pressure and superheats not exceeding

5.1 �C.
Scriven [4] considered thermal diffusion controlled

growth without the assumption of a thin thermal

boundary layer. By obtaining exact solutions of the

equation of energy flow including radial convection, the

asymptotic relation of the exact form given by Plesset

and Zwick [2] was obtained for the limiting case of

moderate to high superheats for commonly used fluids.

This result implies that for large enough Jakob number,

the thin thermal boundary layer assumption is valid. For

commonly used fluids at low superheats, or small Jakob

numbers, Scriven [4] obtained an expression which

simplifies to

RðtÞ ¼ ð2JaaltÞ1=2: ð4Þ

It is noticed that this expression has the same asymptotic

dependence on time as Eq. (3) but a different dependence

on the Jakob number which implies the thin thermal

boundary layer assumption may no longer be valid for
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small Jakob numbers. The dependence on the Jakob

number expressed in Eqs. (3) and (4) was later confirmed

by Riznic et al. [5] who included the influence of inter-

face curvature on the temperature gradient near the

interface. In this analytical work two limiting growth

rate solutions were determined. For Ja > 2, bubble

growth was found to be in agreement with Eq. (3),

suggesting that the effect of interface curvature was

negligible and that the thin thermal boundary layer

assumption is valid. For small Jakob numbers ðJa < 2Þ,
Riznic et al. [5] found that the radius varies according to

Eq. (4), leading to the conclusion that for small Jakob

number, the thin thermal boundary layer assumption is

not valid and curvature of the interface plays an

important role.

A complete description of the bubble growth process

should be represented by a smooth transition between

the early inertia dominated growth and the later diffu-

sion controlled growth. Mikic et al. [10] obtained an

expression for the variation of bubble radius with time

which spans both regions by interpolating between the

limiting solutions for large and small times given by Eqs.

(2) and (3), respectively. The expression is often referred

to as the MRG solution and is given in the form of

scaled radius and time variables

Rþ ¼ 2

3
tþð

h
þ 1Þ3=2 � tþð Þ3=2 � 1

i
; ð5Þ

where the scaled variables are given by

Rþ ¼ RA
B2

; tþ ¼ tA2

B2
; B ¼ 12al

p

� �1=2

Ja;

A2 ¼ 2hfgqv½T1 � TsatðP1Þ�
3qlTsatðP1Þ : ð6Þ

Because the exact conditions on both ends were built

in during the derivation of Eq. (5), the expression ap-

proaches Eq. (2) at small times and is asymptotic to Eq.

(3) as time approaches infinity. This theory was found to

be in good agreement with the experimental data of Lien

[6] for water over a wide range of system pressures,

including low pressure data with a significant inertia

controlled region. The use of the Plesset and Zwick [2]

solution in the interpolation formulation confines the

applicability of the MRG solution to moderate to high

Jakob numbers in which the thin thermal boundary

layer assumption is valid [5,11]. Prosperetti and Plesset

[11] extended the range of applicability of the MRG

type interpolation formula by introducing scaling vari-

ables which describe growth over a wider range of

superheats.

Although interpolation formulas bridge the gap be-

tween the two limiting regimes and provide simple

equations for the approximation of the growth charac-
teristics, they are not solutions to the governing equa-

tions. As a result, the detailed physics of bubble growth

during the transition between the two limits are difficult

to interpret. Furthermore, a complete description of

bubble growth must include the regime where surface

tension forces dominate, which has not been considered

in the analytic works above. To address issues such as

these, numerical computations of vapour bubble growth

in an infinite, uniformly superheated liquid have been

performed by Theophanous et al. [12], Judd [13], Board

and Duffy [14], Donne and Farranti [15], Lee [7], Lee

and Merte [16] and Robinson [8]. In the first three works

cited here, the approach was to assume the shape of the

temperature profile within the thermal boundary layer

which exists around the growing bubble so that the

temperature gradient at the vapour–liquid interface

could be deduced. The latter four works increased the

accuracy of the analysis by numerically solving the one

dimensional energy equation in a moving medium. In

doing so, the temperature gradient in the liquid at the

vapour–liquid interface was obtained from the com-

puted temperature field. By including the necessary

parameters in the physical modelling of the problem, a

more precise description of the nature of bubble growth

is possible. In the present investigation the detailed

physics of spherical bubble growth is explored with

particular focus on the interaction between the hydro-

dynamics and the heat transfer near the vapour–liquid

interface and their relation to changes in the growth

characteristics as the bubble grows through the surface

tension, transition and heat transfer domains.
2. Present one-dimensional theory

Allowing for viscous stresses, Eq. (1) requires the

term 4llðdR=dtÞ
qlR

on the right hand side. Throughout the

parameter space of this investigation, the viscous term is

negligible compared with the other stress terms so that

potential flow in the liquid can be assumed. Conse-

quently, the equation of motion for the spherical bubble

of radius, R, is approximated by the extended Rayleigh

equation, Eq. (1). The initial bubble radius is determined

by assuming that the vapour is initially saturated with

Tv ¼ T1 and that it exists in unstable equilibrium with

the quiescent surroundings. The critical radius is pre-

dicted by the Young–Laplace equation

Rc ¼
2r

PsatðT1Þ � P1
: ð7Þ

Considering an energy balance at the vapour–liquid

interface, the energy required to evaporate the liquid is

supplied by thermal diffusion through the liquid. For a

spherical bubble this gives
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qvhfg
dR
dt

þ hfg
R
3

dqv

dt
¼ 1

4pR2

Z
As

kl
oT
oR

� �
r¼R

dA: ð8Þ

The temperature gradient at the vapour–liquid interface

is obtained by numerically solving the one-dimensional

energy equation in spherical coordinates for the moving

liquid

oT
ot

þ u
oT
or

¼ al
o2T
or2

�
þ 2

r
oT
or

�
ð9Þ

with initial and boundary conditions given by

T ðr; 0Þ ¼ T1; T ðR; tÞ ¼ Tv; T ðR1; tÞ ¼ T1: ð10Þ

The initial condition states that the entire temperature

field in the liquid is constant. The first boundary con-

dition assumes that the temperature of the liquid at the

interface is identical to the temperature of the vapour.

The far field boundary condition is assumed to be uni-

form and equal to the initial temperature. The radial

velocity is determined as a function of the instantaneous

bubble radius and interface velocity by assuming that

the flow field can be determined by the solution for

irrotational flow around the expanding sphere in an

unbounded liquid. The local velocity becomes

uðR; tÞ ¼ dR
dt

R
r

� �2

: ð11Þ

Finally, it is postulated that the vapour is saturated and

remains in thermodynamic equilibrium throughout the

growth period so that the pressure and density can be

specified as functions of the saturated vapour tempera-

ture. As in other works such as Lee [7], the property

variations with temperature are obtained from best-fit

correlations with available property data.
2.1. Solution procedure

Specifying the vapour density and pressure as func-

tions of the vapour temperature effectively reduces the

problem to that of determining the instantaneous values

of R, dR=dt and Tv. In order to do so, the following

variables are defined,

y1 ¼ Tv; y2 ¼ R; y3 ¼
dR
dt

: ð12Þ

The governing equations were rearranged such that a

system of three simultaneous ordinary differential

equations resulted

dy1
dt

¼ dTv
dt

¼ f1ðt; y1; y2; y3Þ;

dy2
dt

¼ dR
dt

¼ f2ðt; y3Þ;
dy3
dt

¼ d2R
dt2

¼ f3ðt; y1; y2; y3Þ:

ð13Þ
For a given time step Dt, the solution of the above sys-

tem of equations requires that the values y1, y2 and y3 be
known at the beginning of the time interval. A fourth-

order Runge Kutta scheme was then implemented to

determine the updated values.

The energy equation at each time step was solved

numerically on a grid which was constructed using a

variant of the grid generation technique used by Chen

et al. [17]

rj ¼ Rþ ðR1 � RÞ

� 1

�
� SR tan�1 1

��
� j� 1

M � 1

�
tan

1

SR

� ���
;

ð14Þ

where SR determines the percentage of grid points near

the interface and has been kept constant at 0.65

throughout this investigation. In order that conven-

tional finite difference techniques could be utilized, the

energy equation was transformed into a stationary grid

with uniform grid spacing where the spatial and tem-

poral derivatives are related to the metric, rg, and

Jacobian, J , through

Tr ¼ J�1rgTg; Tt ¼ Ts � Trrs; ð15Þ

where the subscripts denote differentiation and g and s
are the new spatial and temporal coordinates, respec-

tively. The transformed energy equation becomes

Ts þ aTg þ bTgg ¼ 0: ð16Þ

The Jacobian and the coefficients a and b are related to

the metric and its derivative through

J ¼ r2g; a ¼ Uc

J
þ alrgrgg

J 2
� 2alrg

Jr
; b ¼

alr2g
J 2

: ð17Þ

Equation (16) was discretized using second order central

difference representations of the spatial derivatives and a

fully implicit first order representation of the time

derivatives. At a given time step the temperature field

was determined by solving the resulting system of alge-

braic expressions with the Tri-Diagonal Matrix Algo-

rithm (TDMA).

The appropriateness of the physical modelling of the

problem and the accuracy of the numerical solution has

been assured by rigorous sensitivity studies, including

but not limited to grid independence, time step inde-

pendence and the affect of the initial disturbance re-

quired to commence growth from the initial unstable

equilibrium state as detailed in Robinson [8]. Agreement

with the MRG solution together with some experimental

measurements is shown in Figs. 1 and 2, respectively. It

must be noted that the delay time, which is the time

interval between the disturbance and the time at which

the bubble undergoes significant growth, varies

depending on the magnitude of the initial disturbance



Fig. 1. Comparison of the present solutions with the analytical solution of Mikic et al. [10]. The system conditions correspond with:

Case A, water P1 ¼ 1:0 atm, DTsup ¼ 3:1 �C; Case B, water P1 ¼ 0:372 atm, DTsup ¼ 6:3 �C; Case C, water P1 ¼ 0:362 atm,

DTsup ¼ 17:0 �C; Case D, R113 P1 ¼ 0:0361 atm, DTsup ¼ 48:1 �C.
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Fig. 2. Comparison of the present numerical analysis with the experimental measurements of (a) Board and Duffy [14] and (b) Lien [6].
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[7,8]. For each case tested, a larger disturbance causes

the delay time to decrease. However, within a significant

range of the disturbance parameters, differences are

small enough to be of little practical interest. For this

study, growth was initiated with a 0.0005% increase in

the critical radius over a time interval of 10�9 s. A

comprehensive discussion on the effects of varying the

disturbance parameters can be found in Lee [7].
3. Spherically symmetric bubble growth dynamics

In the following sections, the fundamental nature of

bubble growth is explored by considering the dynamic

coupling between the heat transfer and the fluid
dynamics in the immediate vicinity of an expanding

bubble. The analysis is similar to that advanced by

Robinson and Judd [18] for bubble growth near a heated

surface, although for the much simpler scenario of

spherically symmetric bubble growth. The position

taken here is that the instantaneous rate of heat transfer

to the bubble interface dictates the growth rate since

dR=dt / klðoT=orÞr¼R. However, changes in the rate of

heat transfer can be affected significantly by the hydro-

dynamic resistance of the surrounding liquid. To clarify

this concept, two simplifications are made in the fol-

lowing analysis. First, since compressibility effects have

been shown to be negligible [8], the interfacial heat flux

and the bubble growth rate are analogous and related

through
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dR
dt

� 1

qvhfg
kl
DT ðtÞ
dðtÞ

� �
; ð18Þ

where DT ðtÞ ¼ T1 � TvðtÞ is the effective driving tem-

perature difference of heat transfer and dðtÞ ¼ DT ðtÞ=
ðT ðtÞ=orÞr¼RðtÞ is the extrapolated thickness of the ther-

mal boundary layer surrounding the bubble which is

analogous to the thermal resistance to heat transfer.

Secondly, the hydrodynamic forces acting at the

vapour–liquid interface can be represented by [18]

Phd ¼ qlR
d2R
dt2

þ ql

3

2

dR
dt

� �2

: ð19Þ

Therefore, pressure exerted by the liquid at the interface

is related to the static and hydrodynamic components,

PlðRÞ ¼ P1 þ Phd.

3.1. Bubble growth for an intermediate Jakob Number,

Ja ¼ 45

In the following sections, the growth characteristics

of a single isolated spherical bubble expanding in a

uniformly superheated unbounded liquid will be dis-

cussed. The liquid chosen is water and the boiling con-

dition selected is atmospheric pressure at an initial

superheat of DTsup ¼ 15 �C with a corresponding Jakob

number of Ja ¼ 45.

3.1.1. Surface tension controlled growth

The surface tension controlled domain occurs

immediately after the commencement of bubble growth

and ends when the interfacial acceleration is at its

maximum. Fig. 3 indicates that during this domain, the
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Fig. 3. Bubble growth characteristics for water with a
growth rate is positive and increasing but that increases

in radius are miniscule. Furthermore, Fig. 4 shows that,

initially, the hydrodynamic pressure term is insignificant

such that Eq. (1) reduces to DPvðtÞ ¼ PvðtÞ � P1 � 2r=R.
Since P1 is constant, the inverse relation with radius

dictates that even a minute increase in the radius must

correspond with a decrease in the vapour pressure, with

a proportional drop in the vapour temperature, TvðtÞ.
This effect is significant because, as indicated in Fig. 5,

the drop in TvðtÞ corresponds to an increasing driving

potential, DT ðtÞ, with negligible changes in the thermal

resistance, dðtÞ ¼ d0. This establishes a thermal feedback

effect which is responsible for the dramatic increase

in bubble acceleration, d2R=dt2, shown in Fig. 3. Bub-

ble growth is accelerated since an increasing radius is

related to an increase in the driving temperature differ-

ence, DT ðtÞ which causes an increase in the rate of

thermal diffusion to the vapour–liquid interface through

the increase in the magnitude of the local temperature

gradient, ð� DT ðtÞ=d0Þ, which feeds back by a propor-

tional increase in the bubble growth rate, dR=dt via

Eq. (18).

In the earlier stage of the surface tension domain

(t < 0:002 ms), the system is very near the initial equi-

librium state. Here, the temperature differential is of the

order OðDT Þ � 10�6 �C which is still small enough that

the expansion rate, and corresponding interface accel-

eration, are both small as compared with the maximum

values shown in Fig. 3. Even still, minute changes in the

bubble radius are sufficient to continually cause the

temperature difference, DT ðtÞ, to escalate as the surface

tension stresses are relaxed causing DPvðtÞ to decrease.

At approximately t ¼ 0:002 ms, dðDT Þ=dt increases
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dramatically as a direct consequence of the thermal

feedback effect. In a relatively short time interval

(0:002 ms6 t6 0:0036 ms), the driving temperature dif-

ference increases from nearly zero to almost 2 �C, which
is significant. Fig. 3 shows that over the same time

interval, the interface undergoes a dramatic increase in

acceleration. This is to be expected, since for constant

dðtÞ ¼ d0, the magnitude of the acceleration is propor-

tional to the time rate of change of DT ðtÞ through the

expression

d2R
dt2

/ 1

d
dðDT Þ
dt

: ð20Þ

0

The peak value of the acceleration occurs at t ¼ 0:0036
ms and corresponds with the maximum rate of change of

DT ðtÞ. As shown in Fig. 5, the slope of DT ðtÞ decreases
after t ¼ 0:0036 ms. This is the point of maximum

acceleration and the time that the surface tension con-

trolled growth domain is considered to end.
3.1.2. Transition domain

If left unrestrained, the thermal feedback effect would

drive the interfacial heat flux and growth rate up at a

fantastic rate, causing the bubble radius to increase

several orders of magnitude virtually instantaneously.

This is counter intuitive and in fact does not occur



5108 A.J. Robinson, R.L. Judd / International Journal of Heat and Mass Transfer 47 (2004) 5101–5113
because of the restraining influence that the hydrody-

namics have on bubble expansion during the transition

domain.

At the beginning of the transition region, the inter-

face acceleration is near the maximum value of

d2R=dt2 � 3� 106 m/s2, after which the magnitude of

the acceleration begins to diminish continually, becom-

ing zero at approximately t ¼ 0:0068 ms where the

maximum velocity occurs as seen in Fig. 3. The fact that

the interface acceleration is decreasing indicates that

there are mechanisms at work which tend to depress the

aforementioned thermal feedback effect. The most

obvious is the fact that the expanding bubble now faces

the additional resistance associated with forcing the bulk

liquid out radially. The hydrodynamic pressure term

rises sharply to become a significant term in the equation

of motion and is responsible for a noticeable decrease in

the rate at which the pressure difference DPvðtÞ is

decreasing as shown in Fig. 4 for t > 0:004 ms. Because

changes in vapour pressure are analogous to changes in

vapour temperature, the introduction of the hydro-

dynamic force at the bubble interface has a detrimental

effect on the rate at which the temperature difference

DT ðtÞ increases, thus depressing the thermal feedback

effect. This is the mechanism which is responsible for the

observed decrease in the slope of DT ðtÞ in Fig. 5. Since

dðDT Þ=dt is decreasing and dðtÞ does not change signif-

icantly, the magnitude of the acceleration must decrease

as predicted by Eq. (10) and shown in Fig. 3 for the time

interval 0:0036 ms6 t6 0:0068 ms.

After t ¼ 0:0068 ms the pressure difference, DPvðtÞ, is
primarily balanced by the hydrodynamic pressure at the

interface, and the interface acceleration is negative as

shown in Figs. 3 and 4, respectively. Fig. 5 indicates that

the rate of change of DT ðtÞ continually decreases,

approaching zero, as it approaches the system super-

heat, DTsup ¼ 15 �C. However, this alone does not ex-

plain why the heat flux is decreasing in magnitude

causing bubble expansion to decelerate. As pointed out

by Robinson and Judd [18], the heat flux and growth

rate are decreasing because the positive influence that

increasing DT ðtÞ tends to have on the heat flux is more

than offset by the rate at which advection and conduc-

tion serve to decrease the temperature gradient at the

interface by thickening the thermal boundary layer

surrounding the bubble. Because there is significant fluid

motion directed radially outward from the expanding

interface, the cooler liquid from within the thermal layer

penetrates deeper into the bulk of the liquid by advec-

tion. This, coupled with a net loss of thermal energy by

conduction heat transfer out of the liquid and into the

vapour bubble, causes the maximum temperature within

the boundary layer to move further out from the bubble

interface. Fig. 5 illustrates that this portion of the

transition region is identified by considerable growth of
the thermal layer. Before this time, the thermal layer

thickness remained more or less constant at

dðtÞ � 3� 10�7 m. During this stage, however, the

boundary layer has grown by nearly two orders of

magnitude, dðt ¼ 0:2 msÞ � 8:0� 10�6 m.

3.1.3. Heat transfer controlled growth

Heat transfer controlled growth refers to the interval

of bubble growth during which the rate of bubble

expansion is limited by the rate at which liquid is

evaporated into the bubble, dictated by the rate of heat

transfer through the liquid to the interface. In this do-

main, the pressure difference DPvðtÞ has reduced to

nearly zero as indicated in Fig. 4. As a result, liquid

inertia and surface tension have a negligible influence on

bubble growth because the rate at which DPvðtÞ de-

creases no longer has a significant bearing on the rate at

which the driving temperature difference DT ðtÞ increases
since it is approximately constant at 15 �C according to

Fig. 5. Consequently, the growth characteristics of this

domain are determined solely by the increased thermal

resistance associated with the growing thermal boundary

layer. Fig. 5 shows that the extrapolated thermal

boundary layer thickness increases steadily with no sig-

nificant change in DT ðtÞ. Also shown in the figure is the

analytic expression for the thermal boundary layer

thickness determined by Plesset and Zwick [2] for a thin

thermal boundary layer assumption, dðtÞ ¼ ð1=3patÞ1=2.
The close agreement confirms the correctness of the both

the numerical and analytic solutions as well as the

appropriateness of using the extrapolated thermal

boundary layer thickness, dðtÞ, for characterizing the

thermal resistance in the present analysis.

3.2. The effect of the initial state of the system on the

bubble growth dynamics

3.2.1. Effect of system properties on surface tension

domain

The initial state of the system establishes the length of

the delay time as well as the magnitude of the maximum

interfacial acceleration. The delay time is significant

because it defines the interval between the initiation of

growth and the point of maximum acceleration at which

the bubble begins to grow significantly away from Rc.

The maximum acceleration is also important because the

rate of growth at the end of the surface tension domain

sets the stage for the growth characteristics of the

transition domain.

To illustrate the influence of different initial system

states on the transition region, three levels of superheat

DTsup ¼ 3, 15 and 30 �C at atmospheric pressure have

been selected. These corresponds to Jakob numbers of

Ja ¼ 9, 45 and 90, respectively. The respective growth

characteristics are illustrated in Fig. 6. As indicated in the
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figure, the highest superheat case has the smallest initial

radius as expected from Eq. (7). Since (oPv=oRÞr¼Rc /
ð�1=R2Þ, the smaller Rc causes the rate of change of the

vapour pressure to be higher such that a comparatively

small increases in radius results in a disproportionately

large decrease in the vapour pressure and temperature, Pv
and Tv. As a consequence, a smaller initial radius means

that a smaller increase in radius is required to produce a

significant increase in the driving temperature for heat

transfer DT ðtÞ. This is compounded by the fact that the

initial penetration depth of the thermal layer was found

to scale roughly as d0 � 1=3 Rc such that the thermal

resistance is smaller for smaller bubbles during this

growth domain [8]. These factors have an important

bearing on the thermal feedback effect which is respon-

sible for accelerating growth in this region. For smaller

initial bubble radii, the thermal feedback effect is inten-

sified because a much smaller increase in radius is re-

quired to escalate the driving potential, DT ðtÞ.
Consequently, the rate at which the temperature differ-

ence, interfacial heat flux and growth rate increase for the

DTsup ¼ 30 �C case is comparatively high and decreases

for the DTsup ¼ 15 �C and DTsup ¼ 3 �C cases, respec-

tively. This is signified by the magnitude and time of

occurrence of the peak acceleration in Fig. 6, since

d2R=dt2 / dðDT Þ=dt.
Following this physical reasoning, an order of mag-

nitude approximation for the delay time can be formu-

lated by assuming that the time it takes for the thermal

feedback effect to generate a significant driving temper-

ature difference is related to the time it takes the system
to react to a change in its thermal environment as

characterized by a thermal time constant, tc. With this

assumption, the delay time was scaled as

tc �
L2
c

al
¼ 1

9al

2r
PsatðT1Þ � P1

� �2

; ð21Þ

where the penetration depth is characterized by the

length scale for a sphere, Lc � d0 � 1=3Rc, and Eq. (7)

has been substituted for Rc. Fig. 7 shows good qualita-

tive agreement with this simple analysis and the pre-

dicted delay times for a significant range of initial system

conditions for the numerical predictions of this work as

well as those of Lee [7]. Changes in the magnitude of the
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initial disturbance have an effect on the computed delay

times but not as much as necessary to change the pro-

posed order of magnitude argument presented above.

3.2.2. Effect of system properties on the transition domain

For inertial forces to play a major role during the

transition domain, the thermal feedback effect must

accelerate bubble growth to such an extent that the

hydrodynamic force at the interface becomes large en-

ough to influence the rate of change of the vapour

pressure as it decreases from DPmax to close to zero. The

order of magnitude of the velocity which characterizes

inertial limited growth can be represented by the Ray-

leigh formulation since the acceleration drops off quickly

enough that 3=2qlðdR=dtÞ
2 � qlRðd2R=dt2Þ during the

initial phase of the transition domain [8]

Ui � O

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3

PsatðT1Þ � P1
ql

s !
¼

ffiffiffiffiffiffiffiffiffiffiffi
4r

3qlRc

s
: ð22Þ

The absolute maximum velocity that can be generated

by the system is related to the maximum possible heat

flux corresponding to DTmax=dmin � DTsup=d0, such that
Fig. 8. Curves showing the varying influence of the hydrodynamic pr

for differing initial system condition.
UHT � O
3aJa
Rc

� �
; ð23Þ

where the approximation d0 � 1=3Rc has been substi-

tuted. The ratio of the squares of these two characteristic

velocities provides an indication of the inertial force

required to influence the growth dynamics compared

with the latent energy available to generate the inertial

force

IR � U 2
i

U 2
HT

¼ 4

27

� �
r

qla2

� �
Rc

Ja2
� 1; Inertia controlled
� 1; Diffusion controlled

�
ð24Þ

Fig. 8a shows the case for Ja ¼ 3167 such that IR � 1.

Here the inertial force required to govern the growth

process is much less than that available so that the

hydrodynamic resistance increases to such an extent that

a substantial pressure differential, DPvðtÞ � DPv0 , is sus-
tained. In this way, the explosive growth that would

have occurred if DT ðtÞ increased to its maximum before

the thermal boundary layer had sufficient time to grow is
essure in determining the rate of change of the vapour pressure
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averted. The calculated maximum velocity was Umax ¼
0:976 m/s which corresponds with Ui ¼ 1:05 m/s, indi-

cating that the Rayleigh solution offers an adequate

approximation during the transition phase for IR � 1

and growth can be considered inertia controlled.

Conversely, Fig. 8c shows the case for Ja ¼ 9 such that

IR � 1. Here the inertial force required to govern the

growth process is much greater than that available so

that the bubble is unable to generate the hydrodynamic

resistance necessary to influence the growth process

significantly. As a result, DT ðtÞ increases at the highest

possible rate so that the highest interfacial heat flux can

be generated to sustain bubble growth. The calculated

maximum velocity was Umax ¼ 0:42 m/s which corre-

sponds with UHT ¼ 0:44 m/s indicating that growth is

diffusion limited for IR � 1. Figs. 4 and 8b illustrate

some intermediate cases, Ja ¼ 45 and 85, respectively, in

which the growing bubble generates sufficient inertia to

influence DPvðtÞ, but not enough to be considered inertia

limited as prescribed by the Rayleigh solution. Here,

both the liquid inertia and thermal diffusion play

important roles in determining the growth characteris-

tics during the transition domain.

3.2.3. Effect of system properties on the heat transfer

domain

Fig. 9 shows the temporal variation of the thickness

of the thermal boundary layer, dðtÞ for a variety of test

cases. In this figure the individual curves have been

shifted to the left by an amount of time prescribed by the

respective delay times so that comparisons can be made

between bubbles which begin growing at the same time.

The figure indicates that for early growth, the curves are
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very different but converge quickly. Initially, the char-

acteristic length scale which dominates the fluid flow and

heat transfer is dictated by the initial radius of the

bubble. This is confirmed by noting that the initial

thermal layer thickness increases with initial bubble ra-

dius. However, each bubble expands at a rate which is

much higher than the rate at which their respective

thermal layer grows and a new length scale develops

which is independent of the bubble radius since d=R � 1

for each bubble. This constitutes the thin thermal

boundary layer which has been the subject of several

studies as discussed earlier. Since the thermal diffusivity

of water does not change considerably for the range of

superheat and pressures tested the growth rate of the

thermal boundary layer is not sensitive to changes in

pressure or superheat In this way, differences in the

magnitude of the growth rate during the heat transfer

domain for different system states depend on the initial

superheat and the density ratio as defined in the Jakob

number.
4. Revisiting the MRG solution

The numerical solutions of the present study provide

some justification for the physical modelling of the

MRG formulation for predicting the growth character-

istics during the transition phase from moderate to high

Jakob numbers as well as indicating why the MRG

formulation is not valid during this domain for low

Jakob numbers. The MRG formulation assumes that

the rate of change of the vapour pressure is governed

by hydrodynamic forces in such a way that the equation
0.1 1 10

e, t-tdelay(ms)

t

, 3)

r for different initial system conditions.
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of motion simplifies to the following expression for the

interfacial velocity

dR
dt

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3

DPvðtÞ
ql

� �s
: ð25Þ

Secondly, the analysis requires the thin thermal bound-

ary layer assumption be applicable so that the interfacial

energy balance simplifies to

dR
dt

� kl
qvhfg

DTvðtÞffiffiffiffiffiffiffiffiffiffiffiffi
p=3at

p
 !

: ð26Þ

Assuming a linear variation of DT ðtÞ with DPvðtÞ,
equating the two expressions above gives a quadratic

expression for DT ðtÞ. Substituting the positive root of

the quadratic equation into either Eqs. (25) or (26) and

integrating gives an approximation for the instanta-

neous bubble radius

RðtÞ � Rc ¼
2

3
C0 ðt
h

þ 4CÞ3=2 � t3=2 � ð4CÞ3=2
i
;

C ¼ 9qlaJa
2

2pDPv0
; C0 ¼

ffiffiffiffiffiffiffiffi
p
27a

r
DPv0
ql

� �
1

Ja
: ð27Þ

If the Clapeyron equation is substituted to relate

the initial pressure differential DPv0 ¼ PsatðT1Þ � P1
to the system superheat, DTsup, rearranging Eq. (27)

gives the MRG solution equations (5) and (6). To cir-

cumvent any problems inherent in utilizing the Clapey-

ron equation, the above formulation is plotted in Fig. 10

using accurate values of PsatðT1Þ and compared with the

computed growth curves for a range of Jakob numbers.

The figure indicates that provided that the Jakob num-

ber is large enough, the MRG-type formulation does a

very good job at predicting the computed growth curves

for the transition phase as indicated by the portion of

the curves with a slope greater that 1/2. This is not the

case for low Jakob numbers (Ja < 10). One reason for

the discrepancy for low enough Jakob numbers is that
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the inequality ðUi=UHTÞ2 ¼ IR � 1 holds true so that the

vapour pressure is governed by surface tension, DPvðtÞ �
2r=RðtÞ, not the hydrodynamic pressure. Hence, the

assumption implicit in the MRG solution is incorrect

and the solution should not give valid results during the

transition phase. For higher Jakob numbers, the

inequality (Ui=UHTÞ2 ¼ IR � 1 does not hold true so that

the agreement should improve with increasing Jakob

number as is indicated in the figure. Secondly, the

analysis demands that the thin thermal boundary layer

assumption be applicable. The validity of this assump-

tion for higher Jakob numbers is confirmed considering

that Fig. 9 shows that once the transition region com-

mences, the thermal boundary layer thickness ap-

proaches the analytic solution, dðtÞ � ð1=3patÞ1=2, within
approximately 0.0045 ms for Ja > 10. For lower Jakob

numbers (Ja < 10) it takes much longer for the thermal

layer to approach the thin thermal layer solution which

indicates that the MRG-type interpolation formulation

will give progressively less accurate predictions during

the transition phase of growth as the Jakob number is

reduced.
5. Conclusions

The complicated thermal and hydrodynamic inter-

actions between the vapour and liquid have been

manifested for single isolated bubbles growing in an

unbounded liquid from inception to fully heat transfer

limited growth for a range of initial system conditions. It

has been shown that early bubble growth from the initial

radius is controlled by surface tension forces within the

bubble wall and depends strongly on the initial critical

bubble radius. Minuscule increases in radius result in an

increase in the local interfacial temperature gradient

which facilitates growth by increasing the heat flux into

the bubble. If there is sufficient latent energy in the

system, bubble growth becomes influenced by the fact

that it now must force the surrounding liquid out radi-

ally. Nevertheless, the growth rate must eventually de-

crease with increasing time as the thermal energy stored

within the boundary layer which surrounds the bubble is

consumed by the bubble. Eventually the growth rate

slows enough the liquid hydrodynamics no longer play

an important role and the growth rate becomes limited

by the rate at which the thermal boundary layer grows

which dictates the rate that energy can be transported to

the interface through the liquid.
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